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Abstract-Based on Lekhnitskii-Eshelby-Stroh (LES) representation and perturbation analysis,
analytic solutions are given for displacement and stress fields oftwo anisotropic half-planes, forming
a composite bimaterial, with a perturbed-interface crack, Among various mathematical models
representing real cracks, the "thin cut" model is of special interest, since it requires the simplest
mathematical methods in its study, However, the model does not reflect some of the properties of
actual cracks, in particular the crack should be uneven, When the lateral stresses, parallel to the
interface, dominate in the fracture mechanism, the thin-cut model cannot reveal any stress inten
sifying phenomenon, while many failures, occurring in the interfaces of thin-film and substrate or
fiber and matrix, are always induced by crucial lateral stresses, For these reasons, the unevenness
effect of crack faces must be taken into account to determine the practical stress intensity factors
for predicting the interface fracture behavior. A modified crack with smoothly perturbed surfaces
ensures good agreement with reality, while retaining the simplicity of the mathematical model.
Mathematically, we consider the elastic problem of a perturbed-interface crack lying along the
interface of two bonded dissimilar anisotropic half-planes and the uniform far-field stresses are
specified. When the lateral stresses are much larger than others, the solutions are determined to the
first-order of unevenness to understand how the lateral stresses affect the stress intensity factors as
the crack face is uneven, (g 1997 Elsevier Science Ltd, All rights reserved,

INTRODUCTION

The fact motivating the present work is that the interface structures of fiber and matrix or
thin film and substrate will always fail or debond under certain crucial lateral stresses. This
fracture behavior is very difficult to be analyzed, if the interface crack is traditionally
assumed to be a flat thin-cut. Mathematically, the stress intensity factors are never affected
by the lateral stresses, provided that the interface crack is a thin-cut. In this paper, this
difficulty can be solved by assuming that the interface cracks are slightly perturbed from a
straight line and the stress intensity factors are also presented to show the effect induced by
the lateral stress. In a recent paper, Chen and Hsu (1995) presented analytic solutions for
perturbed-interface cracks in isotropic half-spaces consisting of dissimilar materials. In the
present paper, we will extend the study to the anisotropic bimaterials.

The configuration of the interesting problem, with a non-dimensionalized Cartesian
coordinate system (x" X2), is depicted in Fig, 1. The interface is outlined by two straight
bonded lines and a perturbed-interface crack, which are defined mathematically by

where

Cb : X 2 = 0; Xl E( - 00, -1] u [1, (0) bonded lines,

C1 : X2 = eY_(xd; XI E( -1,1) lower surface of crack,
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Fig. I. Schematic of regularly perturbed-interface crack between anisotropic bimaterials.

Fig. 2. Schematics of holes with cusps.

and e is a small parameter, which is so designed in (2) and (3) that the unevenness of the
crack faces is slight. As e tends to zero, the perturbed-interface crack degenerates into a
straight crack oflength 2. The functions Y ±' together with their derivatives, are designated
to be continuous in order to avoid any additional singularity except at Xl = ± I.

A perturbed-interface crack is called "regular" if

(6)

which ensures the existence of cusps at X = ± I. For such a case, the perturbation procedure
used is a regular one in that all asymptotic expressions are uniformly valid throughout the
region of interest.
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LES representation, presented by Suo (1990) and perturbation analysis arc the basic
concepts which were used to formulate and study the problem considered in this paper.
Homogeneous and general Hilbert's problems are obtained as in Clements (1971) for
solving the perturbed-interface cracks, but the functions Y ± appearing in the Hilbert's
problems must be known a priori, otherwise only complicated integral forms could be
found. Hence, a special case simulating practical failure is chosen to demonstrate the solving
process and give some referable results. The corresponding stress intensity factor will be
determined to the first-order as the crucial lateral stresses dominate the failure.

LEKHNITSKII-ESHELBY-STROH (LES) REPRESENTAnON

The equivalence of those somewhat different formulations used by Lekhnitskii (1963),
Eshelby et al. (1953) and Stroh (1958) in solving anisotropic elasticity problems was proved
by Suo (1990). Referring to this LES representation, the interesting problem considered in
the present paper could be formulated with the following equations for displacements U;,

stresses (Ji/ and resultant forces on an arc T;.

u,(z) = {u;(z) L = A,f.(z) +A. f.(z),

T,(z) = {T;(z) L = - L,f,(z) - L, f,(z),

(7)

(8)

(9)

(10)

Here and generally in this paper, Greek suffixes IY. could be 1 or 2 as a material index
indicating that the field quantities belong to upper (IY. = I) or lower (IY. = 2) half planes and
Latin suffix i and j could be I, 2 or 3 as component indices. The vector function
f,(z) = [II (ZI)'/2(Z2)'/3(Z3)];; superscript T stands for transpose, is holomorphic in the
arguments Zj = X+ illY and Uj are three distinct complex numbers with positive imaginary
parts, which can be solved as roots of the sixth-order polynomial shown below.

(II)

where

12 (/1) = 555/1
2
-2545 /1+ 544,

14 (/1) = 51 1/1
4
-2516 /13 +(2512 +566 )/12 - 2526/1+522,

13 (/1) = 515/13 - (5 14 + 556)/12 + (525 + 546 )/1- 524

and 5pq ; p, q = 1-6 are conventional compliancies to relate the stress vector
{(Jq} = [(J 1J, (J22, (J33, (J23, (J3J, (Jd T and the strain vector {8p} = [8110 822, 833, 2823, 28310 28d T as a
Hooke's law. (II) had been proved to have no real root, and the roots are also assumed to
be distinct in the present paper as they were in some other literatures. The six roots form
three complex conjugate pairs, from which three III with positive imaginary parts can be
selected. Also /1, = [/1j, /12, /13];' «/1.» = diag[/1J, /12' /13]'; diag[] denotes a diagonal
matrix. The elements of the matrices A and L are given by

[-", -/12 -"'"'jL= I 1]3 (12)

-1]1 -1]2 -I

and
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forj3=1,2and

where
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AlP = Slltlfi +S12 -SI6tlp+lJp(SIStlp- S I4),

A2p = S21tlP+S12/tlp- S26 +lJp(S25 -S24/tlP)'

A3p = S41tlp+S42/tlp- S46 +lJp(S45 -S44/tlP)'

A l3 = 1J3(Slltl~ +S12 -S16tl3)+SI5tl3 -SI4,

A23 = rl3 (S21 tl3 +Sn/tl3 -S26)+S25 -S24/tl3'

A33 = t13(S4Itl3 +S42/tl3 -S46)+S45 -S44/tl3'

(13.1)

(13.2)

(13.3)

(13.4)

(13.5)

(13.6)

The matrices A and L shown above have been proved to be non-singular under the
assumption that the roots of the characteristic equation are distinct and a positive-definite
Hermitian matrix B derived from the inner product of A and L has been defined as

(14)

The matrix B has appeared in many solutions and it is named the surface admittance tensor,
the inverse of surface impedance tensor and was investigated in sufficient detail by Barnett
and Lothe (1985) to facilitate the analysis of the Rayleigh and Stoneley wave problem. For
convenience, a positive-definite Hermitian matrix H involving bimaterial elastic constants
is defined as

(15)

Throughout the paper, the matrices Band H will appear in some of the main solutions.
With the expressions of field quantities in (7)-(10), the perturbed-interface crack

problem can be formulated to provide a solution. The structure of anisotropic bimaterial
is here subjected to uniform far-field stresses. The interface between the two media involves
two parts, one is the bonded part induding XI ~ -1 and Xl ?: 1 to be named Cb and the
other is the perturbed-interface crack in -1 < Xl < 1 X Xl between -1 and 1 which will be
replaced by xf in the following sections of this paper to distinguish the perturbed part from
the bonded part. It is assumed that along Cb the interface is perfectly bonded so that we
obtain two continuity equations as shown in (16) and (17).

(16)

(17)

The continuity equation (17) can be rearranged with the aid of (16) as

(18)

Besides, the traction-free condition is assumed along the crack faces. From (8) we then
have two condition equations:

(19)

(20)

where z is along the crack faces.
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PERTURBATION ANALYSIS

Based on the perturbation theory, the complex function vectors fo(z) could be rewritten
as fo(z; e) after involving the perturbation variable e and they can be expressed in powers
of e as

(21)

With (21), the continuity conditions (16) and (18) along the bonded portions of the
interface can be expanded as

L I (fio(x l) +efil (xd +,'" ,) +~(flo(xl)+efll (Xl) +,'" ,)

= L2(fto(xl)+eftl (X l)+,'" ,)+L2(fio(XI)+efil (Xl) +,'" ,) (22)

and

L 1(fio(xd +efil (x 1)+,'" ,) = H- l (B2+B2)L2(fto(xd +eftl (Xl) +,'" ,)

+ H- 1 (B 1 - B2) L 1 (flo (Xl ) +efll (Xl) +," . ,), (23)

where

(24)

The upper and lower crack faces are simulated by Y + (xf) and Y _ (xf), respectively,
such that along them the arguments of the complex functions will be

(25)

and

(26)

Thus, the functions fln(z*) and f2nCz*) can be expanded as follows:

(27)

and

(28)

The condition equations (19) and (20) are then expanded with the aid of (27) and (28)
along the crack faces.

L l {fio(xf) +e[Y+(xf)< <PI) )f'io(xf) +fil (xf)] + 0(e2
)}

+~{flo(xf)+e[Y+(xf)«~»f'lo(xf)+fll(xf)]+0(e2)}= 0 (29)

and
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L 2{fio (xf) +E[Y- (xf)< </12) )£'2"0(4) +fi1 (xT)] + 0(£2)}

+Ldfio(xf) +£[L (xf)«/12»£'io(xf) +fi1 (xT)] + 0(£2)} = O. (30)

From (22), (23), (29) and (30), we have two groups of equations corresponding to the
orders of £0 and £1 as follows:

and

and

where eqns (31), (32), (35) and (36) come from the continuity conditions along the bonded
interface and eqns (33), (34), (37) and (38) from the traction-free conditions on the crack
faces.

BASIC SOLUTION TO THE ORDER OF 8°

Interface cracks without perturbed faces in anisotropic materials have been discussed
by many authors [e.g. Gotoh (1967), Clements (1971), Willis (1971), Ting (1986, 1990),
Bassani and Qu (1989), Tewary et al. (1989), Suo (1990), Wu (1990), Ni and Nemat
Nasser (1991) and Qu and Li (1991)]. The solution obtained in this section has a similar
result to those presented by those authors, but the applied stresses are remotely located.
The solution is referred to as the zeroth order effect in perturbation analysis.

Equations (31), (32), (35) and (36) can be incorporated as follows:

(39)

and

where k = 0, I.
Keeping (39) and (40) in mind, two new complex vector functions 0 k(z) and cI>k(Z) are

designated to be
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0 k(z) = Llf1k(Z) -L2f 2k (Z)

= L 2f 2k (Z) - L J fJk(z)

<Dk(Z) = L1f1k(Z)

= H- 1(B2+B2)L2f2k (Z) +H- 1(B J - B2)r;- flk(Z).

1241

(41)

(42)

With the aids of (39) and (40), 0 k(z) and <Dk(z) can be proved to satisfy the equalities
0t(Xl) = 0 k (xJ) and <Dt(xd = <Dk(xd. Then, we can conclude that 0 k(z) and <Dk(z) are
holomorphic vector functions in the whole complex plane cut along - 1 to 1 on real axis
and the functions flk(Z) and f 2k(Z) can be expressed in terms of 0 k(z) and <Dk(z).

(43)

(44)

(45)

and

(46)

Manipulations between (33) and (34) will show us two relation equations of 0t (xt)
and 0 0 (xt) and of <Dt (xt) and <Do (xf). Equation (33) subtracted from (34) yields

(47)

and adding the two eqns (33) and (34) yields

(48)

With the definition in (41), (47) reveals the first relation between 0t(xt) and 0 0 (xt),
which is that

0t(xt)-00 (xi) = o. (49)

Using (43)-(46), (49) and the definition in (42), (48) reduce to the second relation between
<Dt (xt) and <Do (xi) as

<Dt (xt) +A-I H<Do (xt) = A- ] (B2 +B2)0t (xt). (50)

With the same procedures which were used to find (49) and (50), manipulations between
(37) and (38) also give us two relations of 0t (xt) and 0 0 (xt) and of <Dt (xi) and
<Do (xt) as

and
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lI>i (xt) + ii-IHlI>j (xt) = ii-I (B2+ B2)8j (xt)

Equations (49) and (50) will be used to find the solution to the order of [',0, (51) and (52)
were then used to find the solution to the order of [',1. (49) and (50) are the homogeneous and
general Hilbert's problems, respectively. Referring to the solutions of Hilbert's problems in
England (1971), these problems can be solved without further difficulties. After obtaining
the basic solution to the order of [',0, the solution to the order of [',1, however, can be solved
from (51) and (52) when the profile of the perturbed-interface crack Y±(x*) is given. At
first, the solution to the order of [',0 must be solved because it is valid for different types of
perturbed-interface cracks, hence, it is named basic solution.

Because 8t(xI) = 8 0 (x l ), 8t(xt) = 8 o(xt) in eqn (49) and the remote stresses are
constant, the potential vector function 8 0(z) must be the form of

8 0 (z) = lz,

where I is a complex constant vector.
From (43) and (44), we have

Taking the product of (54) with the matrix ii from the left side, it becomes

and its functional conjugate form is

Comparing (56) with (55), we have

(53)

(54)

(55)

(56)

(57)

Hence, from the knowledge of (53), I is a pure imaginary vector.
According to the similar research for the Hilbert's problem in Suo (1990), the homo

geneous solution to (50) is

[ (
Z_I)ie (Z-I)-;e ]

lI>~(z)=(z2_1)1/2 aw z+1 +bw z+l +cw3 , (58)

where a, band C are complex constants, while the constant vectors wand W 3 and the
constant scalar e are found to form three distinct eigenpairs

(e, w), (-e, w), (0, W3),

satisfying

Referring to the appendix in Ting (1986), the eigenroot e in (60) can be found.

(59)

(60)
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where (= [_~tr(M)2]1/2and M = i(H-ii)(H+ii)-I.
The vectors wand W3 have the orthogonal properties in the sense

1243

(61)

(62)

and orthogonality conditions involving ii can be obtained by taking the complex con
jugation of the above.

With the obtained functions 0 0(z) = lz in (53), we have 0t (xn = lxf to substitute
into (50) for determining the particular solution CI>~(z). After involving the particular
solution, the complete solution to (50) would be

(63)

So far, the zeroth order potential functions 0 0(z) and Cl>o(z) are both obtained, then with
(43)-(46) we can also find f lO (z) and f20(z) for deriving the physical quantities to the zeroth
order from (7)-(10).

In order to determine the complex constants a, band c, we derive the expression of
the remote stress vector (lJ2j)1 from (9).

(lJ2j) 1 = {lJ2j(z)L Iz~oo = [L1f'\O(z)+r;-f'\O(z)] Iz~oo = [CI>~(z)+CI>~(z)] Iz~oo

= (1+A- 1 )(aw+aw)+ 2cw3'

where a = Ab and C is real, due to that (lJ2j), is a real vector and ). = e2e11 .
The constants a, band C then can be found by taking inner products of (64).

(64)

wIH(lJ2j)j
c= .

2wIHw3
(65)

For proving the identity (lJ2j)1 = (lJ2j)2 = lJ2j, we can derive the expression of (lJ2jh from
(9) and (45) with the same procedures used to find (64), then we can find the two expressions
are identical. On the other hand, the expressions of (lJ'lj) 1 and (lJlj) 2 are also derived to be
shown below in order to find the relationship among the remote stresses.

(lJlj)l = {-L I «Ill »f'\O(z) -L1«,ul »1'10 (z)} Iz~oc

= - {L 1<<,ul) )L]l (aW+A -law+CW3) + L I <<;;) )L]l (aw+).-law+CW3)

(66)

and

(lJ1j)2 = {-L2«,u2»f;0(z)-L2«,u2»f;0(Z)} IHOO

= - {L2<<,u2) )LZ
I (A -law+aw+cw3) + L2<<,u2))LZ1(A -law+aw+ cw3)

+ [L2«,u2 »LZ1- L2«,u2 »LzI ](ii + H) -I (Bl + B2)l}. (67)

There are some identities in the Stroh formalism of anisotropic elasticity derived in Ting
(1988). These identities are useful in obtaining a real form solution to two-dimensional
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anisotropic elasticity problems. One of the identities will be utilized to simplify (66) and
(67) and is shown below:

(68)

and other identities are also derived here with the aid of (68) for the simplification purpose,

and

Here, in (68), (69) and (70), L. is one of the three real matrices H, L, S, first introduced by
Barnett and Lothe (1973), which is symmetric and positive definite. While N. 1 and N.3,

derived in Ting (1988), are presented as follows.

( [

-555 0

and N a3 = ± ~O 0

Sl5 0

(71 )

where

Ll = 511 555 - (515 )2 > 0,

I'm = (-5S551m+51555m)/Ll (m = 6,2,4),

Sm = (51551m-5115sm)/Ll (m = 6,2,4).

In the above, the reduced elastic compliance

is derived by letting

6

c3 = 0 = L S3q(Jq
q=1

(72)

(73)

from the Hooke's law for the two-dimensional deformations. And solving for (J3 from (73),
we have

Since

6

cp = L 5pq (Jq, P #- 3.
q#3

5p3 = 53q = 0 for any p,

(74)

(75)

there is, in fact, no need to exclude q = 3 in the summation of (74). Likewise, there is no
need to exclude p = 3 in (74) because it reduces to a trivial identity whenp = 3. The matrix
S considered as a 6 x 6 matrix has zero elements on the 3rd column and the 3rd row. If we
remove the 3rd column and the 3rd row, the reduced 5 x 5 matrix S can also connect the
5 x 1 matrices if and 8 which are obtained, respectively, by deleting from (J and c the third
element. (74) is equivalent to
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6 = Su.

Hence, with (68), (69) and (70), the expressions (66) and (67) can be simplified to be

1245

(76)

and

Because the second rows of the 3 x 3 matrices N~, and N'3 are (-1,0,0) and (0,0,0),
respectively, the second components of the vector equations (77) and (78) are trivial
identities. Therefore, we can simplify (77) and (78) again by reducing the 3 x 3 matrices N'I
and N'3 to a 3 x 2 matrix "a' and a 2 x 2 matrix "a3, respectively.

[

r6 S6]
"al = - r2 S2

r 4 S4 a

and (79)

and with the proved identity Im[BI(aw+A-Iaw+cw3)] = Im[B2().-law+aw+cw3)], which
can be carried out easily with (60), eqns (77) and (78) are then expressed as

[~fl ] ~ +E~]+2nL{i:]-i2n,,[~:]] (80)
~f3 1

and

[~fIJ ~ +E~]+2n"[i:]-i2n,,[~:]] (81 )
~f3 2

Here, ~] and ~3 are the first and the third components of the vector Im[B](aw+ A-'aw+ cW3),
as well as 9 1 and 93 are the first and the third components of the vector (L I +L2) -II,
respectively. Then, letting 0 13' (80) be subtracted by 0 23' (81), we have the relation equation
among the far-field stresses as

(82)

where

and O~I = _ [~]'
SI5

The relation equation (82) can be verified by the same result presented in Bassani and Qu
(1990) and Qu and Bassani (1993). It has a concise form with the reduced elastic compliances
S as
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When the materials are both isotropic, then (83) will reduce to

which agrees with Rice and Sih (1965).

(83)

(84)

SOLUTION TO THE ORDER OF 8
1

Equations (51) and (52) can be used to find the solution to the order of e1 for any
interesting perturbed-interface crack if the profiles ofcrack Y± (xt) is known. In this section,
the regular case named holes with cusps (Y+ - Y_ ~ 0) is examined. In this case the profile
of the perturbed-interface crack will be simulated with

(85)

where - 1 ,,;; b ,,;; 1.
The functions selected in (85) have some characteristics. The power 3/2 ensures that

the crack faces have vanishing derivatives at ± 1, and makes such cracks regular. The
parameter b involved in the expression of Y _ can create some different configurations of
regularly perturbed-interface cracks with its changeable values. Moreover, the expressions
of the crack faces, which are used here to simulate the regularly perturbed-interface cracks
for the purpose of demonstration, are essentially simple and useful to make the desired
solutions easy to be carried out, without loss of generality.

As the study by Chen and Hsu (1995), the effect induced by the lateral far-field stresses
will only exist in the first-order solution for the perturbed-interface crack. When the lateral
far-field stresses are much more crucial than a2;, then the first-order solution becomes an
important consequence in the stress intensity factors. On the other hand, the effect induced
by a2; in the first-order solution is therefore ignorable, because the zeroth-order solution
which is resulted only by a2; can take over the whole concern for a2;. Hence, in the following
study only the lateral far-field stresses are involved in the derivation of first-order solution.
Absolutely, such a simplification also makes the deriving process and the final solution
elegant and delicate.

With the selected functions in (85) and the obtained zeroth-order solutions (51) and
(52) can be presented as

where only the lateral stresses (am I and (a\jh are involved.
The following function will appear in the solution to (86) :

(88)

which satisfies the condition
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With the above function K(z), the solution to (86) could be found, and it is

1247

(89)

(90)

where the vector polynomial 83z
3+82z2+8]z is so introduced that 8](z) tends to 0(1/Z2) as

z tends to infinity. The coefficient vectors are then determined as

Writing eqn (87) in its components, or equivalently, taking the inner product of (87) with
wTH, wTand wIH, we obtain

where

,1..+( *)+,1..-( *)_( Ih )(1 *2)312 i h *3 .3 h *'1'13 Xl 'l'l3 X] - 93 -:2 3 -X]' -:2 3X 1 +1 4 3X ]'

(92)

(93)

(94)

(95)

(96)

The components hi's and 9i's are derived by taking the inner products of eqns (95) and (96).

h] = wT
(B2+B;)[(crvL -b(crV)21, h

2
= wT

(B2+B;)[(crV)1 -b(crvhl ,
AwTHw },-lwTHw

h
3

= wI(B2+B;)[(crvL -b(cr'Bhl

wIHw3

and

Hence, (92)-(94) are then scalar equations; they can be solved easily as done in Chen and
Hsu (1995). Indeed, they are constructed from the known solutions for isotropic bimaterials,
the complete solution is

(97)

where
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and
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_I 2 3/2 (Z-I)( I)¢13(Z) - 2n(Z -I) In Z+ I g3 - 2h3

(98)

(99)

(100)

The vector polynomials nI2z2+nllz+nlO, n22z2+n2Iz+n20 and n32z2 +n31z+n30 are also intro
duced such that all the component solutions, (98)-(100), tend to 0(1/Z2) as Z tends to
infinity. The coefficients are then determined.

and

So far, the solution to the regularly perturbed-interface crack of anisotropic bimaterial
is obtained to the first-order of the unevenness of crack face. Then, the complex potential
vector functions fll(z) and f 21 (Z) can be determined from (43)-(46) with the found 0 1(z)
and <Ill (z) for those physical quantities in both materials.

STRESS INTENSITY FACTORS

The traction in the bonded interface a distance r ahead of the crack tip is given as

(101)

It reads that the interface traction at each fixed point r can be decomposed into two
components: one is along W3 and the other is in the plane spanned by Re[w] and Im[w].
This equation may be taken as the defining equation for the complex K and real K 3• As r
approaches the tip, the W 3 component has a square root singularity and the planar com
ponent is oscillatory, with K3 and K measuring their intensities, respectively. The results
are clearly the analogue of the corresponding ones for isotropic bimaterials. After deriving
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the expression oft(r) with the obtained solutions in the last two sections, the stress intensity
factors can be easily extracted by comparison with eqn (WI).

The stress intensity factors derived from the zeroth-order solution are

(102)

and

(103)

which are induced only by (J~i and the stress intensity factors derived from the first-order
solution are

(104)

and

(105)

where (Jf'1 and (Jr3 are the only considered far-field stresses.
The structure of the near-tip fields around an interface crack has been identified, with

only one real and one complex factor K 3 and K. In principle, for a given boundary value
problem, these factors should be determined by the external geometry and load, and can
be used in a similar way as the conventional stress intensity factors in Irwin's fracture
mechanics. The results obtained in (102) and (103) are the basic solutions to the problem
of finite interface crack of anisotropic bimaterial, but they are induced only by the far-field
stresses (J2J. Once the stresses (J2J diminish and the other stresses (Jf, and (Jf3 dominate the
fracture behavior of the perturbed-interface crack, then the corresponding stress intensity
factors become the results presented in (104) and (105). The results in (104) and (105) have
been multiplied by c which represents the unevenness of the crack faces. As the simple
example proposed in Chen and Hsu (1995), the critical fracture parameters, such as K~

and XC, can be found experimentally with eqns (102) and (103), then these critical values
are used to determine the stresses (JfDcritical and (J~)critica' from (104) and (105) when these
lateral stresses dominate the fracture behavior in some practical cases. In general, in eqn
(101), the two eigenvectors IV and IV3 should be normalized to be dimensionless to give
conventional dimensions for stress intensity factors. The different choices of normalization
affect the definition of stress intensity factors by a real factor to K 3 and a complex factor to
K.

For some necessities, the energy release rate G is more useful than the stress intensity
factors. Hence, with the expressions in (102)-(105) and the relationship between the energy
release rate and the stress intensity factors, one will have the corresponding energy release
rate for different loading cases. The energy release rate is so defined as

(106)

which is cited from Suo (1990).
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ON SOLUTIONS FOR ORTHOTROPIC MATERIALS

In this section, bimaterials are considered with the xy-plane as a mirror plane, in which
the in-plane and antiplane deformations are decoupled. They can be treated separately
here. At first the authors will consider the antiplane-field. Hence, in eqn (11), 13(J1) is
identical zero for a material with such a symmetry. The characteristic equation for antiplane
deformation becomes

(107)

The expression S44SSS - (S4S)2, a principal minor of the compliance matrix, is positive. Hence
there are two complex conjugate roots to (107). According to the convention the root with
a positive imaginary part is chosen, i.e.

(108)

Only one holomorphic function f(z3) is needed to represent antiplane deformations, with
Z3 = x + J13Y' The representations (7)-(10) reduce to

U3 = 2Re[Af(z3)],

0"23 = 2Re[Lf'(z3)],

T3 = -2Re[I.f(z3)],

0"13 = -2Re[LJ1J(z3)]' (109)

Now the defined 3 x 3 matrices L, A and B reduce to scalars. They are

(110)

With these reduced results, the stress intensity factor derived from the zeroth-order solution
in (103) will reduces to

(111)

which is derived by obtaining c = ~ 0"~3 from (65) and the stress intensity factor derived
from the first-order solution in (105) then also reduces to

(112)

Besides, for a homogeneous material with xy-plane as a mirror plane, the characteristic
equation for in-plane deformation, specialized from (11), is

(113)

The roots of eqn (113), which have been shown by Lekhnitskii (1963), can never be real
and thus they occur in two conjugate pairs. Assuming they are distinct, we can choose two
different roots, J11 and J12, with positive imaginary parts, to each of which a complex variable
Zj = x + J1j is associated. The field quantities can be expressed by two holomorphic functions
f,(zl) and!z(z2), as obtained by discardingj;(z3) in (7)-(10).

The matrices A, L, Band Hare 2 x 2 now the elements for A and L can be specialized
from (12) and (13) with '11 = '12 = 0, while

-i(J11J12S11 -SI2) J.
-s22 Im(J11' +J1i')

(114)

To gain more insight, the principal axes of each material are taken to be in x and y
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axes, since other orientations may be treated by in-plane rotations and the associated tensor
rules shown in Ting (1982). Given an orthotropic solid, since S16 = S26 = 0, only four elastic
constants, Sib S22' Sl2 and S66, enter the plane problem formulation. Using the defined
parameters by Suo (1990)

(115)

where the two parameters measure the anisotropy in the sense that y = 1 when the material
has transversely cubic symmetry and y = p = 1 when the material is transversely isotropic.
The positive definiteness of the strain energy density requires that

y > 0 and -1 < p < 00.

The characteristic equation (113) is then

(116)

The roots with positive imaginary parts are

III = iy-I/4(n+m), 112 = iy-l/4(n_m), for 1 < p < 00,

III = y-l/4(in+m), 112 = y-I/4(in-m), for -1 < p < 1,

The matrix B for an orthotropic material, reduced from (114),is

(117)

i((SI1 S22)1/2 +S12)J.

2ny-l/4 (SII S22) 1/2
(118)

It is interesting to note that B is still well-behaved even if p = 1 (A and L are singular for
this case). The matrix H for two orthotropic materials with aligned principal axes is

where

[
Hl1

H=
-if3(H I1 Hn)I/2

if3(H 1I Hn)I/2],

H 22
(119)

H l1 = [2nyl/4(sI1S22)1/2L~1 +[2nyl/4(sIIS22)1/2]"~2'

H 22 = [2ny-I/4(SlIS22) 1/21"~ I + [2ny-l/4 (SII S22) 1/2L~2'

(H11 H 22 )1/2f3 = [(SIIS22)1/2 +SI2]"~1 - [(SI1 S22)1/2 +Sd"~2' (120)

Here 13 is the same as ( in (61) when the materials are orthotropic. The non-oscillatory
fields can be obtained if H is real, or 13 = O.

The oscillatory index e now becomes

e = (2n)-1 In [(1 +13)/(1- 13)]. (121)

The normalized eigenvector, its definition form given dimensionlessly by Suo (1990) to give
conventional dimensions for stress intensity factors, is
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(122)

Hence the complex constant a can be determined with (119) and (122).

and the complex stress intensity factor in (102) is then determined as

(123)

(124)

With the component expression of the matrix B in (118), we will have the component
expression of B+ Bfor determining hI.

[

4nOlI/4(s s, )1 /2
_ I 11"2

B+B=
o

Then h] can be determined,

(125)

Another constant gl can also be determined,

(126)

(127)

With the obtained hi and g] the complex stress intensity factor in (104) can also be
determined without further difficulty.

CONCLUSION

Due to the agreement with reality, regularly perturbed-interface crack discussed in the
present paper is a more practical model to analyze the real interface crack, especially for
the fracture behavior dominated by lateral stresses. As the similar study by Chen and Hsu
(1995), the basic techniques to analyze the regularly perturbed-interface crack ofanisotropic
bimaterial are constructed successfully. The primary techniques are LES representation
and perturbation analysis. The LES representation named by Suo (1990) always provides
a formalism for solving anisotropic elastic problems and now is still valid for treating the
perturbed-interface crack. While, the perturbation analysis is used to divide the formulation
of the interesting problem into two solving groups to the zeroth-order and to the first
order, the interface crack is slightly perturbed. Then the regular perturbation procedures
provide solutions to both the orders, and the corresponding stress intensity factors are
obtained. With the finished study in this paper, the concept of interface fracture mechanics
now includes treating an interface crack of anisotropic bimaterial, which has regularly
perturbed surfaces.

The stress intensity factor is of the most concern in this paper. There are two groups
of stress intensity factors determined to the zeroth-order and to the first-order, respectively.
The stress intensity factors to the zeroth-order are induced only by (J'{j and the ones to the
first-order are induced by (J'{j, ((Jv)] and ((Jr/h. When the remote stresses (J~j, ((Jm] and
((Jfjh are of the same order. Then it is enough to use the zeroth-order solution to represent
the near-tip behavior as those analyses in past papers where the interface crack is assumed
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to bc a flat thin-cut. Because the unevenness parameter G is small, neglecting the first-order
effect will not give any serious consequences. That is why the interface crack can always be
assumed to be a flat thin-cut. But when the lateral stresses (O"f;L and (O"fj)2 are much more
crucial than O"ft, the order of magnitude of the first-order effect may be the same as or
higher than the one of the zeroth-order effect. For this sake, the first-order solution becomes
more and more important, provided that the fracture behavior is dominated by the lateral
stresses. However, in the first order solution, the lateral stresses and O"'{j both give contri
butions. If the lateral stresses are so much more crucial, then O"~ can be ignored in the first
order solution. Nonetheless, we still have the effect induced by O"'{j in the zeroth order
solution. Hence, 0"2) was taken away from the derivation of thc first-order solution as the
authors did in this paper. On the other hand, it also makes the final solution elegant and
delicate to drop the remote stresses O"'{j out of the derivation of the first-order solution.
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